

(relatively) simple software

T. E. Roelofsen Moody¹ (*Contact tmoody@raritanval.edu*), J. J. Feldmeier², V. Gorjian^{3,4}, L. Rebull⁴, B. Sepulveda⁵, E. Sharma⁵, T. Spuck⁶, C. Weehler⁷

INTRODUCTION

RIGHT: Sample Excel

The Spitzer Space Telescope Teacher Program is a collaboration between the Spitzer Science Center and the National Optical Astronomy Observatory. Through this program, twelve teachers were selected to submit observing proposals for time on the Spitzer Space Telescope. The *Intergalactic Star Formation in Tidal Dwarf Galaxies of M81* Project was one of those selected and awarded director's discretionary observing time to study a small region of an M81 tidal tail. This region has previously been observed at optical wavelengths and contains a candidate tidal dwarf galaxy. The four teachers involved in this project met at the Spitzer Science Center in July 2006 to analyze the data, using the SSC's MOPEX software and MaxIm DL software. MOPEX is generally too difficult for students to learn and is not easily accessible to students and teachers. MaxIm DL is software that is readily available in public schools (at a cost <\$500) and offers a graphical interface that can be easily manipulated by high school students. Using MS Excel, the teachers were able to generate a simple conversion table to convert MaxIm DL photometry values into flux and magnitudes. The values obtained by MaxIm DL were compared to values obtained by both MOPEX and SExtractor software and were found to be comparable. In addition to its potential use for photometry with students, MaxIm DL can be used to produce three-color images. For science results using these data, please see our companion poster, Hedden et al. For additional examples of using these tools, we also show data from the study of IC2118, another Spitzer Teacher Project. For Science results from these data, please see our companion poster, Spuck et al.

PROBLEM

• The teachers involved in this Spitzer program wanted to access Spitzer data in their classroom, with students. The Spitzer data is provided in FITS format, requiring some image processing software. • Most teachers do not have access to professional image processing software, such as IDL, MOPEX or SExtractor, and this software is too difficult for students and teachers to learn and use. • MaxIm DL is a possible option for more accessible image processing software but photometry is problematic: MaxIm DL only provides intensity values in counts/pixel. These values must be

conversion table. students must ma enter values from header, as well as measured intensit spreadsheet conve intensities to Jans magnitudes.

🖪 🛃 🕭 🖪 🔍 🔍 🔍 200% 🗸 🕅

 (\bigcirc)

		🗅 🖻 🖪 🎒 🔍 🖤	🕺 🗈 🖻 💅 🗠 • 🖙 🐁	ኛ Σ 🕫 🛃 🚺	ļ 👰 根 100%	6 • 😰 🗛	abi 🛄 🖬 🔽 🔘		♦ 🗗 🗊 1	F .
Note that		Arial • 10	▪ B I U ≣ ≣ ≣ ⊞ ■	\$ % , *.8 +.8	: ::: . · 3	• • <u>A</u> • <u>k</u>	r () () () () () () () () () (• == == = =	A 🖾 🔭	
nually		1 2 Welcome to the Maxim	B DL conversion tool	C	D	E	F	G	<u>H</u>	
the FITS		 3 Please only enter inform 4 5 Enter the RA for your st 	nation into yellow boxes. tar (ex: 09 59 28.63)				As you go along, ent	er your data for the san	ne star below	
the		6 Enter the Dec for your S	Star (ex: 68 39 56.1)					Wavelength (microns) Jy		
		8 Open the Maxim DL Fit 9 Enter CDELT1	s header	0.000337894	1 2		J 2MASS H 2MASS K 2MASS	1.25 1.65	1.00E+01 1.10E+01 1.20E+01	
cy; the		11 This box converts from 12 This box converts from 13 This box converts from	degree/px to sqdeg/px sqdeg/px to sqarc/px sqass/px to starodians/px	1.1412E-07 1.478990580 3.47600E_11	3		IRAC 1 IRAC 2	3.6	1.30E+01 1.40E+01 1.50E+01	
erts		14 Enter Intensity 15 This box gives you the I 16 This box gives you the I	Flux of your star in Mjy	1.512 5.26E-11 5.26E-01	2 Mjy		IRAC 4 MIPS 1 MIPS 2	3.0 8 24 70	1.60E+01 1.70E+01 1.80E+01	
kys and		17 This box gives you the l 18 18	Flux in uJy	5.26E-02 5.26E-02	2 uJy		MIPS 3	160	1.90E+01	
		19 Below, pick which Wav	elength you are looking at	at different Wavelengths						
		20 J 2MASS 21 H 2MASS 22 K 2MASS		1694 1024 666.7	1 1 7	Pick the Flux of Vega				
		23 IRAC 1 24 IRAC 2 25 IRAC 3		280.9 179.7 118	3 7 5	from the table on the left and enter	20	30.9 		
		26 IRAC 4 27 MIPS 1 28 MIPS 2		64.13 7.14 0.775	3 4 5	it Here				
ig-in Window Help		29 MIPS 3 30 31		0.159	9					
		32 The Magnitude of your s 33 34	star>	16.819731	3					
		Conversion for	Spitzer Data 🖌 Enters your Ma s • 🔪 🌂 🗋 🔿 🔛 📣 🔌 •	gnitude Data Here 🏒 RA • 🛃 • 📥 • ☴ 🛲 🛱	. Dec Conversior	n / Sheet3 /				•
		Ready Ready Image: Constraint of the second se	oft PowerPoint 🥢 🌈 Microsoft Ou	tlook We 🏾 🍋 Spitzer2		🔀 Microsoft Ex	cel - maxi		NUM	i 🗾 🖏 8:03 i
Information		<u>×</u> -								
Cursor (X= 180, Y= 105	5), Rad= 7, Rad2= 1 Magnitude 201	377		_						
Maximum 1.747 Minimum 0.260 Median 0.331	Intensity 6.8 SNR 20.1	125 884			LEF	T: Sa	ample	MaxIm		
Average 0.370 Std Dev 0.152	Bgd Avg 0.3 Bgd Dev 0.0	124 127			wind	low.	Note t	he		
Centroid (X= 180.096, Y= FWHM 2.687''	104.929) Flatness 0.3	32			aperi	ture t	ool and	d the		
Mode Aperture 💌 🔽	Display in <u>C</u> a	librate <<			inten	sitv	value.	This		
Intensity 2563.05	Extract from image				value		ntered	into th		
Exposure 600 ÷	Set from FITS				onro	adehe	et (ab	$\frac{1}{10}$ to		
- Spatial Calibration					sprea					
Set Y 1.22	FITS in use		· · ·		gene	ral fl	ux and			
					magi	nitud	e value	es.		

RIGHT: Tri-Color image of the IC2118 region in 3.6, 8 and 24 _m. Please see companion poster Spuck et

Both images produced by E. Sharma, a student at Lincoln High School, using MaxIm DL and Spitzer FITS data

CREATING TRI-COLOR IMAGES IN MAXIM

- MaxIm DL allows you to make tri-color images of downloaded Spitzer FITS images, with just simple alignment procedures. The program allows you to determine which color will be shown for which wavelength. The standard is to chose blue for shorter wavelengths and red for longer wavelengths. See sample student tri-color images above.
- MaxIm DL also allows for animation of several images, at various speed settings. This can be useful for finding appearing and disappearing features.

ror ricip, press ri		1
🏄 Start 🧾 2 Internet E 🔻 📧 Microsoft E	cc Microsoft Pow 📡 MaxIm DL 📰 Paint Shop Pro	« 🔊 🎬 🧿 💑 🧶 🛺 🖓 📑 7:55 PM

METHOD FOR OBTAINING FLUX

A simple spreadsheet program was created that converts MaxIm DL intensity values into magnitude and flux. For full instructions, see accompanying handout or to download this conversion spreadsheet go to: coolcosmos.ipac.caltech.edu/cosmic_classroom/teacher_research/products.shtml

Simplified Instructions are as follows: 1. Go to View on the tool bar, and select "FITS Header info". Record the information listed under CDELT 1 and CDELT2. This is the Degree per Pixel scale of your image. 2. Go to View on the tool bar, and select "Information Window". Set the mode setting to astrometric. 3. Move the cursor around on the image; note the information changing in the window. You will get the x,y for the cursor, and the x,y for the centroid. The centroid is just the center of the object you are on. Below the x,y in each case you will have RA and DEC. 4. The intensity of the object shows up to the right of the centroid RA/DEC. 5. Open the Excel Conversion spreadsheet. Enter the CDELT1 and 2 values and the RA/DEC of your star. The Excel spreadsheet will convert your measured intensity into flux and magnitude. 6. This information can then used to produce an SED (Spectral Energy Distribution).

FLUX COMPARISON

Using MaxIm DL, ~50 photometric measurements (counts/pixel) for point sources in the M81 region were obtained and converted (using the spreadsheet conversion) to Janskys. The same sources were measured using MOPEX and SExtractor software. To the right is a log/log flux comparison of those values for IRAC 3.6 μ m (where the PSF is the most undersampled and photometry is the hardest). There is a reasonably close correlation between the programs (additional analysis including parameter optimization is pending). We conclude that MaxIm DL is appropriate for student work to ~15% accuracy with respect to professional astronomy programs.

For full instructions, see handout or go to coolcosmos.ipac.caltech.edu/cosmic_classroom/teacher_research/products.shtml

SOFTWARE REQUIRED:

- MaxIm DL Image Processing Software: Distributed by Cyanogen www.cyanogen.com
- Microsoft Excel with conversion spreadsheet, available via download from http://coolcosmos.ipac.caltech.edu/cosmic_classroom/teacher_research/products.shtml
- In addition: Recommended Spitzer Teachers Handbook, also available at above site

ACKNOWLEDGMENTS: This project was funded by the Spitzer Space Telescope Observing Program for Students and Teachers, a joint project of NASA and NOAO. We also acknowledge the NOAO Teacher Leaders in Research Based Science Education Project funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

¹New Jersey Astronomy Center for Education, Somerville, NJ, ²Youngstown State University, Youngstown, OH, ³Jet Propulsion Laboratory, CA, ⁴Spitzer Science Center, Pasadena, CA, ⁵Lincoln High School, Stockton, CA, ⁶Oil City Area Senior High School, Oil City, PA, ⁷Luther Burbank High School, San Antonio, TX