

Searching for IR Excesses around Li-Rich and Rapidly Rotating K Giants Using WISE

John C Gibbs¹, Luisa M Rebull², David V Black³, Elin Deeb⁴, Estefania Larsen⁵, Sarah Cashen¹, Ashwin Datta¹, Emily Hodgson¹, Megan Lince¹, Rosie Buhrley³, Julie Herring³, Kendall Jacoby³, Elena Mitchell³, Shailyn Altepeter⁵, Ethan Bucksbee⁵, Matthew Clarke⁵

¹Glencoe High School (Hillsboro, OR), ²Caltech (Pasadena, CA), ³Walden School of Liberal Arts (Provo, UT), ⁴Bear Creek High School (Lakewood, CO), ⁵Millard South High School (Omaha, NE)

ABSTRACT & BACKGROUND: Stars evolving from the main-sequence (MS) to the red giant branch (RGB) exhibit several characteristic changes, including expansion and cooling of the outer layers, decrease in rotation rate, and a series of new shell-burning and core-burning phases. A number of RGB K giants exhibit uncharacteristically rapid rotation rates that seem to correlate with high lithium abundances (*A*(Li)) (Carlberg et al. 2012). These higher rotation rates and *A*(Li) are inconsistent with those predicted by standard stellar evolutionary models. Previous studies have suggested that many of these high Li RGB stars have IRAS excesses suggestive of a circumstellar shell or disk (de la Reza et al. 1997, Drake et al. 2002). Proposed hypotheses to explain these characteristics include accretion of giant planets or a newly triggered fusion stage causing ejection of a dusty shell. Using data from the Wide-field Infrared Survey Explorer (WISE), which has a higher spatial resolution than IRAS, we have reevaluated these IRAS-selected targets and added additional RGB K giants from Carlberg et al. (2012) that were selected without regard to IR brightness. Our findings indicate that many of the IRAS sources that exhibited an IR excesses, making it difficult to assess if there is a correlation in this sample. Our companion poster, Deeb et al. presents the educational aspects of this project. This research was made possible through the NASA /IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

